
 

 

 
Abstract—Infants are curious learners who drive their own 

cognitive development by imposing structure on their learning 
environments as they explore. Understanding the mechanisms 
underlying this curiosity is therefore critical to our 
understanding of development. However, very few studies have 
examined the role of curiosity in infants’ learning, and in 
particular, their categorization; what structure infants impose on 
their own environment and how this affects learning is therefore 
unclear. The results of studies in which the learning environment 
is structured a priori are contradictory: while some suggest that 
complexity optimizes learning, others suggest that minimal 
complexity is optimal, and still others report a Goldilocks effect 
by which intermediate difficulty is best. We used an auto-encoder 
network to capture empirical data in which 10-month-old 
infants’ categorization was supported by maximal complexity [1]. 
When we allowed the same model to choose stimulus sequences 
based on a “curiosity” metric which took into account the 
model’s internal states as well as stimulus features, categorization 
was better than selection based solely on stimulus characteristics. 
The sequences of stimuli chosen by the model in the curiosity 
condition showed a Goldilocks effect with intermediate 
complexity. This study provides the first computational 
investigation of curiosity-based categorization, and points to the 
importance characterizing development as emerging from the 
relationship between the learner and its environment. 
 

Index Terms— Curiosity, Intrinsic Motivation, Infant 
Categorization, Neural Network, Variability 

I. INTRODUCTION 

Infants are curious learners who explore their environment 
and engage selectively with stimuli based on their learning 
history and in-the-moment properties of the task in hand [2]. 
Importantly, they do so largely autonomously and without 
feedback or extrinsic reward: infants are intrinsically 
motivated to learn [3]. By structuring their own learning, then, 
infants drive their own development. However, infants’ self-
generated environment is substantially different to the adult 
equivalent [4]. Understanding infants’ curiosity-based 
exploration is therefore critical to our understanding of 
development more broadly. 

Curiosity-based intrinsic motivation systems are 
increasingly used in the development of autonomous 
computational systems [5], and a growing body of 
computational and robotic work explores the reward 
mechanisms which subserve a range of cognitive functions 

and behaviors, for example low-level perceptual encoding [6], 
novelty detection  [7], reaching  [8] and motion planning [9]. 
Various computational implementations of intrinsic 
motivation have been proposed, such as the drive to increase 
the ability to predict outcomes e.g., [10], a “creative” drive to 
find systematicity in input [11], [12], or competence-based 
systems which seek out maximally- or minimally difficult 
tasks (for an in-depth review, see [13]). Further, based on 
insights from developmental psychology, recent work has 
highlighted the value of incorporating developmental 
constraints in curiosity-based computational and robotic 
learning systems [14], [10], [15]. For example, Oudeyer and 
Smith [16] describe a robotic demonstration of curiosity-
driven learning using puppy robots, demonstrating that 
imitation of a “learner” agent’s actions and vocalizations by a 
“teacher” agent facilitates curiosity-based learning, where 
curiosity is defined as a probabilistic drive to reduce 
uncertainty in action outcomes. However, fewer studies have 
examined the role of curiosity from the infant’s perspective, 
and in particular its role in the processes that underlie a 
fundamental component of infant cognition and development 
– categorization [17]. 

A wealth of empirical studies demonstrates that infants 
possess impressive categorization abilities from birth [18]. 
Categorization is also flexible [19] and highly sensitive to task 
influences such as presentation order [20] and perceptual 
variability [21]. These studies, which generally employ 
rigorously controlled stimuli to facilitate comparison between 
different sources of category information, have yielded mixed 
results. For example, newborns can learn highly-predictable 
sequences of visual stimuli, but not less predicable sequences 
[22]. Similar phenomena have been seen in noun 
generalization tasks, in which older toddlers can generalize 
categories after training with perceptually simple – but not 
complex – stimuli [23]. In contrast, 10-month-old infants in a 
novelty preference/categorization task formed a robust 
category when familiarized with novel stimuli in an order that 
maximized, but not minimized, overall perceptual differences 
between successive stimuli [1]. Similarly, Quinn & Bhatt [24] 
demonstrated that 6- to 7-month-old infants formed a category 
when successive stimuli varied between trials but not when 
successive stimuli were identical. Still other studies have 
uncovered a Goldilocks effect, in which learning is optimal 
when stimuli are of intermediate difficulty. In particular, a 
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series of recent experiments showed that 8-month-old infants 
looked longer in response to auditory or visual stimuli that 
were moderately, but not maximally or minimally, predictable 
[25], [26], and older children in a hybrid word 
learning/categorization task retained novel label/object 
mappings when category exemplars were of intermediate 
perceptual variability [27]. Overall, then, it is not clear what 
degree of difficulty is optimal for infant categorization. 
Further, whether infants can generate this structure for 
themselves during curiosity-driven categorization is not 
known. Here we explore these questions in two neural 
network simulations of infant categorization. Our first 
simulation captures the empirical results of Mather & Plunkett 
([1]; E1). In a second simulation we demonstrate that 
curiosity-based stimulus selection leads to optimal learning 
(E2). 
 

II. A NEURAL NETWORK MODEL OF THE EFFECT OF 
PERCEPTUAL VARIABILITY ON INFANT CATEGORIZATION 

In a preferential looking study, Mather and Plunkett ([1]; 
henceforth M&P) trained 48 10-month-old children with eight 
exemplars of a novel animal category. Each stimulus included 
four features (leg length, neck length, tail thickness and ear 
separation; see Fig. 1) which varied systematically in 
magnitude across four out of five possible values. Although all 
children saw the same stimuli, half saw them in sequences 
which maximized mean overall Euclidean distance (ED) 
between stimuli, and half saw them in sequences which 
minimized that distance. At test, all children saw two 
simultaneously presented stimuli: one peripheral exemplar (a 
new exemplar with extreme feature values) and one category-
central, prototypical stimulus (a new exemplar with the 
average value for each feature dimension). 

It is broadly agreed that given sufficient experience with a 
stimulus, infants exhibit a novelty preference and look longer 
to novel than to familiar stimuli [28]. Based on this, in looking 
time experiments if infants look for longer at one test stimulus 
than another it is inferred that the infant has formed a category 
during training that excludes the preferred (i.e., novel) 
stimulus. In M&P, only infants in the maximum distance 
condition showed evidence of having formed a category (i.e., 
above-chance preference for the peripheral stimulus which 
was more novel than the category prototype). Infants in the 
minimum distance condition showed no preference. The 
authors concluded that when successive differences between 
stimuli were maximized, infants were forced to traverse more 
of the “category space” than their peers in the minimum 
distance condition, leading to a stronger or more accurate 
category representation in the maximum distance condition. 

As with any behavioral study, M&P’s data provide a 
snapshot of a particular age group’s performance in a 
particular task; however, such data do not allow us to explore 
the cognitive mechanisms underlying these behaviors [29]. 
We therefore used a neural network model to simulate the 
effect of difficulty in M&P’s task. Closely following M&P’s 
design, in Experiment 1 we trained our model with stimulus 

sets in which mean between-stimulus Euclidean distance was 
maximal and minimal, respectively, and also with sequences 
with intermediate or random between-stimulus distances. We 
tested the model on novel peripheral and prototypical stimuli. 
Based on M&P, we expected the model to form the most 
robust/accurate category after training with maximum distance 
stimuli, then intermediate distance, and finally minimum 
distance. 

 
 

Figure 1. Stimuli used in Mather & Plunkett [1] and the 
current study 

A. Model architecture 
We used an auto-encoder architecture that has previously 
captured patterns of infant categorization (e.g. [30]; Fig. 2). 
Auto-encoders are feed-forward connectionist neural 
networks consisting of an input layer, a hidden layer and an 
output layer. These models learn to reproduce input patterns 
on their output layer by comparing input and output 
activation after presentation of training stimuli, then 
adjusting the weights between units using backpropagation 
of this error. The current network consisted of four input 
units, three hidden units, and four output units. Each input 
unit corresponded to one of the four features of the training 
stimuli (i.e., leg length, neck length, tail thickness and ear 
separation). Hidden and output units used a sigmoidal 
activation function and weights were initialized randomly. 

 
B. Stimuli 

Stimulus feature values were taken from the stimulus 
dimensions provided in Younger [31] (E1, Broad; see Fig. 2; 
these stimuli were also used by M&P). For each feature, 
values were normalized to lie between 0 and 1. Thus, 
features of the stimuli presented to the model had the same 
relative size as features in the stimuli used by M&P. 
 



 

 

 
 

 Figure 2. Model architecture 
 

Training sets were selected based on the mean ED between 
stimuli for each possible presentation order. EDs were 
calculated in the same way as in M&P: all 40,320 possible 
presentation sequences for the eight training stimuli were 
created, and for each of these sequences we then calculated 
the mean ED between successive stimuli based on rank 
feature values. Stimuli for the following four conditions 
were selected based on mean ED: 

 
• Maximum distance (max; cf. M&P maximum 
 distance): 24 sets with largest mean distance between 
 successive stimuli  
• Minimum distance (min; cf. M&P minimum distance): 
 24 sets with smallest mean distance 
• Medium distance (med): 24 sets with intermediate
 mean distance, specifically sets 20149 – 20172 when 
 sets are  sorted in order of distance (set 20160 is 
 “middle” set) 
• Random: stimuli presented in random order 
 
The test set was identical across conditions, and consisted of 
two category-peripheral stimuli (new exemplars with 
extreme feature values) and one category-central, 
prototypical stimulus (new exemplar with the average value 
for each feature dimension). 
 

C. Procedure 
During training, each stimulus was presented until network 
error fell below threshold or for a maximum of 20 sweeps. 
To obtain an index of the model’s learning, we tested the 
model with the entire training set after each sweep (with no 
learning) and recorded sum squared error (SSE). Order of 
presentation of training stimuli varied by condition (see 
Section B: Stimuli). We tested the model with three novel 
test stimuli, presented for a single sweep with no learning, 
and again recorded SSE. There were 24 separate models in 
each condition, reflecting the 24 participants in each 
condition of M&P. 
 

D. Results 
1) Training trials. During training, infants in M&P 
demonstrated a significant decrease in looking from the first 

to the final 3-trial block. We used SSE after each training 
sweep as a proxy for looking time [32], [33]. For the max 
and min conditions we submitted SSE during the first and 
final 3-trial block to a 2 (block: first, last; within-subjects) x 
2 (condition: max, min; between-subjects) mixed ANOVA1. 
In line with M&P, a main effect of block (F(1, 46) = 97.34, 
p < .0001, η2

G = .46) confirmed that overall SSE decreased 
from the first block (M = 0.57, SD = 0.11) to the final block 
(M = 0.54, SD = 0.11). A main effect of condition (F(1, 46) 
= 2079.12, p < .0001, η2

G = .96) revealed that there was less 
error overall in the max condition (M = 0.45, SD = 0.03) 
than in the min condition (M = 0.66, SD = 0.03). Finally, 
there was a significant block-by-condition interaction (F(1, 
46) = 4.40, p = .041, η2

G = .03), which arose from a greater 
decrease in SSE in the max condition (mean decrease = 
0.045) than in the min condition (mean decrease = 0.030). 
Thus, as with the infants in M&P, “looking” in the model 
decreased over training. On the assumption that infants look 
away from stimuli they have fully encoded, the model 
predicts more robust familiarization in the max condition 
than the min condition, as indexed by less looking. This 
effect did not reach significance in M&P’s analyses. Note, 
however, that our model data are substantially less variable 
than M&P’s empirical data, likely accounting for our 
detection of significant differences where M&P found null 
effects.  
 
2) Test trials. In empirical categorization/novelty preference 
tasks, increased looking to peripheral stimuli at test is taken 
as evidence that infants have learned a category which 
includes the prototypical stimulus. Again using SSE as a 
proxy for looking time, we collapsed our analyses across the 
two peripheral stimuli [1], and calculated proportion of total 
test SSE to the peripheral stimulus, as depicted in Figure 3. 
Wilcoxon rank-sum tests2 against chance confirmed that in 
all conditions the model formed a category (all Vs = 300, all 
ps < .001). However, a Kruskal-Wallis test revealed that 
SSE (and therefore categorization) differed between 
conditions (W(3) = 80.13, p < .001). Post-hoc, two-tailed 
Wilcoxon tests (Bonferroni-corrected) confirmed that the 
model produced more SSE in the max condition (Mdn = 
0.99) than in the min condition (Mdn = 0.76; W = 576, p < 
.0001, r = -1.53), the med condition (Mdn = 0.79; W = 576, 
p < .0001, r = -1.53) or the random condition (Mdn = 0.83; 
W = 575, p < .0001, r = -1.51). All other between-condition 
differences were also significant (all ps < .0001). Note that 
although infants did not show evidence of category 
formation in M&P’s minimum distance condition, the 
authors argue that these infants were in fact categorizing, but 
not sufficiently robustly for this to be detected at test. 
Overall, then, the model captures the looking behavior 
exhibited by infants in M&P: the model formed a more 
robust category after training with sequences which 
maximized rather than minimized overall EDs between 
stimuli. 

 
1A mixed effects model produced the same overall pattern of results, 

however due to non-convergence during model comparisons we report the 
ANOVA here. 

2 We report non-parametric tests due to non-normality of test SSE 



 

 

 
E. Discussion 

In Experiment 1 (as in M&P) the order of stimulus 
presentation was fixed to control the mean successive ED 
between conditions. This created an artificially-structured 
environment in which the model learned best from the inputs 
with the most inter-stimulus variation. As noted, however, 
outside the lab infants are curious explorers, constructing 
their own infant-appropriate learning environments [4]. A 
handful of studies suggest that when they do so, there is 
evidence of a Goldilocks effect, where optimal learning 
arises from stimuli that are complex enough to provide novel 
information, but not so difficult that learning becomes 
impossible. Importantly, “complexity” depends not just on 
stimulus features (e.g., shape) but on the infant’s own 
learning history [25], [26], [11]. Thus, in Experiment 2 we 
allowed the model to be curious; that is, to choose its own 
stimuli based both on environmental (i.e., ED) and intrinsic 
(i.e., internal states) factors.  
 

 
 

Figure 3. Proportion SSE to peripheral stimulus at test in 
Experiment 1. ***p < .001. 

 

III. EXPERIMENT 2: SIMULATING CURIOSITY-DRIVEN INFANT 
CATEGORIZATION 

In Experiment 2, the model itself selected the order in which it 
received stimuli. On each training trial, it calculated a 
selection criterion for each possible successive stimulus, and 
selected the stimulus for which the absolute value of this 
metric was maximal.  

F. Model architecture 
Model architecture and parameters were identical to those 
used in Experiment 1. 

G. Procedure.  

The procedure used in Experiment 2 was identical to that 
used in Experiment 1, with the exception that stimulus order 
was determined by the model (see Section H). 

H. Stimuli 
Individual training and test stimuli were identical to those 
used in Experiment 1. However, we did not present the 
model with fixed stimulus orders. Instead, it chose the 
sequence in which it saw stimuli, with the constraint that 
each stimulus was seen exactly once. 

 
We provided the model with two methods of stimulus 
selection: 

  
• Curiosity-based selection:  Before presentation of each 
stimulus, the model calculated (t-o)o(1-o) (curiosity 
function) for all possible successive stimuli where t = 
possible target values and o = possible output values. For 
example, after presentation of the first stimulus, each of the 
seven remaining stimuli was presented to the model for a 
single sweep (with no learning) and the resulting target and 
output values used to calculate curiosity. The next stimulus 
used to train the model was that for which the curiosity 
function was maximal. 

In the curiosity function, t-o represents the error in 
response to a given stimulus, and reflects the relationship 
between the model (or learner) and its targets (or the 
learning environment). o(1-o) relates to the model’s internal 
state, and more specifically, its plasticity: the term, which is 
the derivative of the sigmoid function and is part of the 
backpropagation weight update function, is maximal for 
output values of 0.5 and minimal for outputs of 0 or 1. 
Therefore it defines changes in plasticity as a function of the 
model’s output activation. Thus, our index of curiosity took 
into account the variability of stimuli available in the 
environment, but critically also incorporated aspects of the 
learner’s internal state, allowing prior experience to affect 
in-the-moment learning. 
 
• Euclidean selection:  While the max condition of 
Experiment 1 maximized mean Euclidean distance between 
all stimuli in a set, the Euclidean selection condition allowed 
the model to select its own stimuli by calculating the 
Euclidean distance between the previous and all potential 
successive stimuli on each training trial, and selecting the 
stimulus for which this value was maximal.  

Unlike the curiosity condition, in which the model selected 
its first stimulus by calculating the curiosity function based 
on its initial state, in the Euclidean selection condition the 
model compared two stimuli to calculate the selection 
criterion. The model’s first stimulus was therefore random, 
and the model selected all successive stimuli.  

I. Results and discussion 
Proportion of total SSE to test trials is depicted in Figure 4. 
Wilcoxon rank-sum tests against chance (0.5) confirmed that 
the model formed a category in all conditions (both ps < 
.001). Allowing the model to choose its own stimuli 



 

 

therefore led to category formation irrespective of how the 
model made that choice. A Wilcoxon test revealed that the 
model generated more SSE in response to the peripheral 
stimulus in the curiosity condition (Mdn = 0.97) than in the 
Euclidean selection condition (Mdn = 0.91; W = 495, p < 
.0001, r = -0.92). Thus, the model formed a stronger 
category representation in the curiosity than the Euclidean 
condition. Importantly, this result demonstrates that using a 
selection criterion that takes into account the model’s own 
internal state as well as aspects of the environment leads to 
better performance than a selection criterion based on 
environmental characteristics alone. 

Interestingly, there was no difference in SSE between the 
curiosity and max conditions (W = 235, p = 0.28, r = -0.22). 
This result raises the question if the curiosity mechanism 
selects the maximally novel next stimulus at each point in 
training. This would be in contrast to previous research 
which suggests that intermediate novelty is preferred by 
autonomous learners [25], [26], [11], [34]. To explore this 
possibility, we analyzed the stimulus sequences chosen by 
the model in the curiosity and Euclidean selection 
conditions. 

 
 

Figure 4. Proportion SSE to peripheral stimulus at test in 
Experiment 2. ***p < .001. 

 
The entire set of 40,320 permutations of the eight training 
stimuli generated 281 unique overall mean EDs. Table 1 
provides the rank mean ED (higher rank = greater ED) for 
each sequence chosen by each of the 24 models in the two 
conditions. 
 
Table 1. Rank mean Euclidean Distances for the sequences 
chosen in the Euclidean selection and curiosity conditions 
 
Condition Rank mean ED Frequency/24 
Euclidean selection 2/281 9 
 14/281 15 
   
Curiosity 34/281 5 
 41/281 18 
 50/281 1 

 

Unlike in the max condition of Experiment 1, neither 
curiosity-based nor Euclidean selection maximized overall 
mean Euclidean distance. Critically, in the curiosity 
condition the model chose stimulus sequences with lower 
mean distances than in the Euclidean selection condition; in 
fact, analysis of the individual stimulus-by-stimulus 
differences revealed that the model failed to maximize 
successive ED for 27% of its choices. For 18 out of 24 of its 
sequences it first maximized and then immediately 
minimized ED, suggesting that curiosity-based selection 
maximizes learning whilst minimizing interference from 
successive stimuli. Thus, irrespective of whether difference 
in the current study is thought of in terms of mean or 
successive ED, the model optimized its learning by choosing 
stimuli of intermediate differences in the curiosity condition 
based on its internal states and relationship to the learning 
environment. 

IV. GENERAL DISCUSSION 
In Experiment 1 we used an auto-encoder to capture empirical 
data presented by Mather and Plunkett [1], in which 10-
month-old infants formed a robust category when familiarized 
with stimuli in sequences which maximized the mean 
perceptual distance between stimuli, but not sequences which 
minimized it. To explore whether curiosity-based stimulus 
selection would lead to similarly successful categorization, in 
Experiment 2 we allowed the model to choose its own stimuli 
based on maximizing an index of curiosity that took into 
account the model’s internal states as well as perceptual 
variability, or based on maximizing perceptual differences 
alone. Learning, as evidenced by the strength of the resulting 
category, was best after curiosity-based stimulus selection, 
with no difference between optimum learning in Experiment 1 
and Experiment 2. 

These simulations raise three important questions and make 
strong predictions for future empirical work. First, although 
the model showed a Goldilocks effect in the curiosity 
condition, why did it choose sequences closer to the most 
difficult end of the spectrum, rather than sequences of true 
intermediate difficulty (i.e., ranked around 140/281 as indexed 
by mean ED)?  This result depends critically on the inclusion 
of the output term in the curiosity function, the calculation of 
which incorporates previous learning as well as in-the-moment 
environmental input and task structure. In effect, curiosity-
based learning allows previous experience to affect 
“difficulty”; that is, intermediate difficulty is relative to the 
state of the learner at any given point in development. In line 
with dynamic systems accounts of development [35], then, in-
task knowledge (i.e., what level of difficulty will be optimal) 
is not based on a straightforward, linear relationship between 
features in the environment, but rather emerges from a 
nonlinear function of those features and the model’s learning 
history. 

Second, why was learning in the max condition, in which 
stimuli were chosen a priori based on environmental features, 
as strong as in the curiosity condition?  As in M&P, we 
maximized overall ED in this condition, resulting in sequences 
in which successive EDs were sometimes not maximized. The 
(overall) max sequences therefore provide a similar 



 

 

intermediate-difficulty learning environment as in the 
curiosity condition. Importantly, however, the max condition 
reflects a situation in which learning opportunities are 
precisely determined before learning takes place – a situation 
unlikely to be found outside the highly-structured lab 
environment. In contrast, the current model predicts that when 
infants are allowed to direct their own learning opportunities 
during categorization, their looking behavior will exhibit a 
Goldilocks-type effect in which optimal learning emerges 
from intermediate difficulty.  

Finally, and perhaps most importantly, what does this model 
suggest about the mechanisms underlying infant 
categorization?  The sequences chosen by the model in the 
curiosity condition predict that in order to prevent interference 
during learning, infants will initially select the maximally 
novel stimulus (relative to the remaining stimuli), followed by 
the minimally novel stimulus, then the next most novel, and so 
on until all stimuli have been seen. Data collection exploring 
these two predictions with 10-month-old infants in a 
categorization task is currently underway. Overall, however, 
the current simulations unite work in in developmental 
psychology with recent insights from robotics and autonomous 
systems in the first neural network investigation of curiosity-
driven infant categorization. They highlight that development 
does not happen in isolation, due to intrinsic or extrinsic 
factors alone. Rather, the current studies illustrate 
development as a system which emerges from the dynamic 
interaction between the environment and learner. 
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