

Some thoughts on curiosity in infants and neural network models

Gert Westermann

Katie Twomey

My work

Object learning, categorization, word learning

Methods

Behavioural measures

(eye tracking: looking times and pupil dilation)

Computational modelling

Behavioural measures

Familiarization/novelty preference method for categorization

1. Show the infants a number of objects from one category, one after the other, until they get familiarised and look less.

- 2. Then, show two test stimuli, one from the trained category, one from another.
 - Preference for the 'other' stimulus: categorisation

Behavioural measures

Familiarization/novelty preference method

Randomized presentation of individual stimuli.

Where is curiosity in this?

Epo

Curiosity and looking times

Curiosity is not seeking out novelty per se, but learning from novelty.

Intrinsic reward is not merely for encountering surprise, but for *eliminating* surprise by learning about it and making it unsurprising.

Therefore we need to understand (changes in) the learning mechanism to understand which information is selected in curiosity-driven learning.

Looking time studies help reveal the learning mechanism

- ✓ Looking time at individual stimuli
- \checkmark Looking preference at test

Looking time as an index of the information selection mechanism

We can ask: What affects looking time?

✓ Age

- ✓ Nature (variability) of stimuli
- ✓ Order of stimuli

Rest of this talk

✓ What affects how much time infants spend looking at objects?

- ✓ A computational model of some experimental results
- \checkmark Curiosity-driven learning in this model.

Therefore, the more unusual something is, The longer the infant looks at it.

Age effects on looking time

> Familiarization speeds up with age.

Processing speed hypothesis: Infants process visual information faster with age.

Individual differences: Familiarization speed predicts IQ at a later age (Bornstein & Sigman, 1986)

Age effects on object processing

Audiovisual integration: Learning to link objects with the sound they make.

Training Phase	
16 trials	

V1-A1

V2-A2

(Chen & Westermann, in prep)

Measure: Pupil dilation

Measure of attention/memory load/surprise, also in infants.

10-month olds (N=18), 15-month-olds (N=16), adults (N=19)

Results

0 =onset of sound

10-month-olds: no effect

15-month-olds: Reaction to perceptual novelty Reaction to crossmodal violation

Adults:

Reaction only to perceptual novelty

Perceptual narrowing, entrenchment

(Chen & Westermann, in prep)

Summary: with age:

Faster processing, but also tuning of processing to ignore certain stimulus differences.

Individual differences.

Stimulus property effects on looking time

Young infants prefer to look at **complex** stimuli

(Fantz, 1964)

Infants prefer **dynamic** over static stimuli

Stimulus property effects on categorization

Object **variability** affects category formation

Infants habituated to broader set of stimuli formed broader categories (Oakes et al, 1997)

Familiarity preference

Sometimes infants prefer to look at the *familiar* stimulus, not the novel stimulus.

Switch from familiarity to novelty preference

Depends on

- duration of exposure
- > age
- stimulus complexity

Familiarity preference

In some paradigms, we look for a familiarity preference!

Learning words for objects

Neem!

Neem!

Learning the sounds that objects make

Learning regularities in sequences

Younger (1985)

Categorization of animals drawings

4 features: leg length; neck length; ear distance; tail width

Younger (1985)

Result:

10-month-olds look longer at peripheral than at prototypical stimulus: evidence for category formation.

Familiarization sequence matters

Using these stimuli: Mather & Plunkett (2011)

Familiarization: ordered stimuli to minimize/maximize perceptual similarity between successive stimuli

Familiarization sequence matters: Results

(target = prototype)

Category was formed only in the high-distance condition.

Mather & Plunkett (2011)

Summary: Stimulus property effects on looking time

- > Preference for complex and dynamic stimuli.
- Familiarity-novelty preference shift, depending on age, stimulus complexity, exposure duration
- Variability of stimuli and specific sequence of stimuli affect category formation

Computational modelling of category learning

Here: with artificial neural networks

(with Katie Twomey)

Auto-encoder neural network input = target

Mareschal & French (2000)

Auto-encoder neural network input = target

Mareschal & French (2000)

Auto-encoder neural network input = target

Mareschal & French (2000)

Auto-encoder neural network

input = target

The model (brain?) as a regularity extractor to form semantic representations.

Modelling the effect of stimulus order

- ✓ Animal drawings encoded by their feature values
- ✓ Each familiarization stimulus shown for 20 weight updates
- After familiarization phase, testing on prototypical and peripheral stimuli
- ✓ 24 models per condition trained

Modelling the effect of stimulus order

Does the **order** of familiarization stimuli make a difference?

Order them in different conditions according to the perceptual distance between adjacent familiarization stimuli (like Mather & Plunkett, 2011)

- ✓ Minimum distance
- ✓ Maximum distance
- ✓ Medium distance

Results

Testing the model on the whole stimulus set during familiarization: how well does it learn?

Results

Error ratio (~looking time preference) at test

Maximal distance between successive stimuli optimizes learning.

Thus: Structuring the environment for the learner affects learning success.

But: a 'curious' learner structures the environment for herself!

> Curiosity: drive to maximize learning progress.

Curiosity in an auto-encoder network

encode

Network aims to minimize internal error: discrepancy between what it sees and how it reproduces what it sees.

A 'curious' model should engage with those stimuli that enable it to minimize this error most effectively.

Curiosity in an auto-encoder network

encode

> Learning in a neural network: weight adaptation through gradient descent.

Gradient for a network with sigmoid units:

(t-0)*0*(1-0)

- t = target (i.e., here: input)
- o = output
- Curiosity-driven learning: Always choose the next familiarization stimulus that maximizes this term.

Relation between the learner and the environment

Internal state of the model: plasticity

(t-o)*o*(1-o)

So, during familiarization training, choose the next stimulus that maximizes (t-o)*o*(1-o) to learn from it.

Results

Compare curiosity-driven learning with (usual) random presentation of familiarization stimuli.

Results

'Looking preference' at test

Curiosity-driven learning leads to better category formation than random learning.

Compare curiosity-driven learning with maximal-distance ordering of the familiarization stimuli

Results

'Looking preference' at test

Intrinsic, curiosity-driven information selection does as well as the optimal structuring of the external environment.

But: curiosity-driven learning does not always choose the maximally distant stimulus.

Example sequence for curiosity-driven learning

Stimulus	distance to	nth most distant
	previous stimulus	out of x remaining
		\bigcap
f2	n/a	n/a
f8	1.2215	2/7
f1	1.1897	4/6
f7	1.2215	2/5
f4	1.2278	3/4
f3	0.2767	3/3
F6	1.2694	1/2
f5	0.2767	1/1

In sum

Choice of stimulus in curiosity-driven learning depends on:

Changes moment-by-moment.

Pilot study with 10-month-old infants

Conclusions

We can learn even from lab based experiments about curiosity:

- What is the learning mechanism for which curiosity provides the (optimal) inputs?
- How does this mechanism change over developmental time, thus,
- How will information selection change over developmental time?
- Curiosity as 'eliminating surprise' in a learning mechanism that works in the real world and in the lab.

Thank you.

Katie Twomey (Lancaster University)

Yi-Chuan Chen (now at Oxford University)

